- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Asi, Hilal (2)
-
Duchi, John C. (2)
-
Candes, Emmanuel. (1)
-
Chadha, Karan (1)
-
Cheng, Gary (1)
-
He, Shushan (1)
-
Romano, Yaniv (1)
-
Sesia, Matteo (1)
-
Smith, Adam (1)
-
Song, Shuang (1)
-
Thakurta, Abhradeep (1)
-
Ye, Xiaojing (1)
-
Zha, Hongyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Lin, H. (5)
-
Balcan, M (3)
-
Hadsell, R (3)
-
Larochelle, H (3)
-
Ranzato, M (3)
-
Balcan, M. F. (2)
-
Hadsell, R. (2)
-
Larochelle, H. (2)
-
Ranzato, M. (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H. (Ed.)
-
He, Shushan; Zha, Hongyuan; Ye, Xiaojing (, Advances in neural information processing systems)Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H. (Ed.)We propose a novel learning framework based on neural mean-field dynamics for inference and estimation problems of diffusion on networks. Our new framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators, resulting in a highly structured and interpretable RNN. Directly using cascade data, our framework can jointly learn the structure of the diffusion network and the evolution of infection probabilities, which are cornerstone to important downstream applications such as influence maximization. Connections between parameter learning and optimal control are also established. Empirical study shows that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.more » « less
-
Asi, Hilal; Chadha, Karan; Cheng, Gary; Duchi, John C. (, Advances in neural information processing systems)Larochelle, H; Ranzato, M; Hadsell, R; Balcan, M; Lin, H. (Ed.)
-
Romano, Yaniv; Sesia, Matteo; Candes, Emmanuel. (, Advances in Neural Information Processing Systems)Larochelle, H; Ranzato, M; Hadsell, R; Balcan, M; Lin, H. (Ed.)
-
Asi, Hilal; Duchi, John C. (, Advances in neural information processing systems)Larochelle, H; Ranzato, M; Hadsell, R; Balcan, M; Lin, H. (Ed.)
An official website of the United States government

Full Text Available